A review on mechanism and factors affecting pyrolysis of biomass

Om Prakash Bamboriya¹, Lokendra Singh Thakur^{*1}, Hemant Parmar², Anil Kumar Varma³, Vijay Kumar Hinge⁴

^{1*}Department of Chemical Engineering, Ujjain Engineering College, Ujjain-456010, Madhya Pradesh, India ²Department of Mechanical Engineering, Ujjain Engineering College, Ujjain-456010, Madhya Pradesh, India ³Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur-208002, Uttar Pradesh, India

⁴Department of physics, Ujjain Engineering College, Ujjain-456010, Madhya Pradesh, India *Corresponding author email: lokendrast@rediffmail.com

Abstract-In the present worldwide scenario of searching alternative sustainable renewable energy resources to minimize overexploitation of fossil fuel, thus afford has been made in this study to summarize pyrolysis of biomass as a sustainable energy source. Among the thermochemical technologies, pyrolysis greatly reduce reliance on fossil fuel by converting various types of biomass into eco-friendly end products such as bio-oil, pyrolytic gases and bio-char. Based on available literature, its socio-economic benefits, and easy adoptability proved pyrolysis an attractive process in the sequence. This review mainly deals with the mechanisms of biomass pyrolysis (heterogeneous reactions affecting dynamics and kinetics by chemical bonds breakage and redistribution, reaction structure and interfacial diffusion of reactants and products) and some key factors affecting pyrolysis products distribution such as biomass composition, particle size, reaction temperature, heating rate, vapour residence time and reaction atmosphere.

Keywords- Biomass, Pyrolysis, Mechanism, Temperature, Heating rate

1. INTRODUCTION

The worldwide concerned issues such as greenhouse gas emissions, air quality degradation and particulate emission due to consumption of conventional fossil fuels. Therefore, it is realized to find some renewable energy sources which reduce increased massive load on fossil fuel. Now, great efforts have been made by researchers for conservation of fossil fuel through using of various sources of sustainable alternative energy such as hydropower, wind, solar, geothermal and biomass [Wang et al., 2016; Varma & Mondal, 2016b and White et al., 2011]. Biomass is attractively pronounced as eco-friendly, renewable and sustainable energy sources due to is clean, abundant and carbon neutral characteristics [Thakur et al., 2018; Varma & Mondal, 2016c]. An approximate worldwide production estimate yearly lignocellulose biomass is around 2.2×10^{11} tons [Feng & Lin, 2017 and Torres et al., 2007].

The word Biomass emerges from biological terms *phytomass* (plant) and zoomass (animal). It is an organic (natural carbohydrate polymers and nonedible plant) and biodegradable material produced by photosynthesis process in the presence of sun light and available to us from agricultural crops, forestry materials, animal waste, aquatic plant and algae

[Wang et al., 2016; Dhyani & Bhaskar, 2017; Santos et al., 2015 and Oladeji et al., 2015]. Lignocellulose biomass mainly consists of cellulose (35-50%), hemicellulose (20-35%) and lignin (10-20%) with small inclusion of substances such as moisture, minerals and extractives (e.g., resins, tannins, terpenes, oil and fatty acids) [Feng & Lin, 2017; White et al., 2011 and Alonso et al., 2010]. The conversion of solid biomass to energy can be possible through biochemical processes such as anaerobic/aerobic digestion and fermentation processes to produce CH₄ and C₂H₅OH and thermochemical processes [Kwietniewska & Tys, 2014; Limayem & Ricke, 2012]. The thermochemical processes defined according to oxygen supply and product distribution which include combustion, gasification, liquefaction and pyrolysis [Goyal et al., 2008 and Stevens, 2011]. Among this pyrolysis process has been extensive building as a promising platform for the production of fuels and valuable chemicals from several types of biomass [Garg et al., 2016].

The pyrolysis process thermally depolymerizes the solid biomass to liquid, also known as bio-oil, in absence of O_2 along with biochar and biogases [Kan et al., 2016]. Bio-oil can be used as transportation fuel and heat generation, while biochar can be applied to the agricultural lands as a soil amendment or utilized to produce activated carbon whereas non-condensable

gases used as energy in domestic and industrial application [Varma & Mondal, 2016a]. The main product bio-oil is present in the liquid form, containing a high amount of aromatic compounds, which makes it as a potential source for alternate energy [Anex et al., 2010; Wright et al., 2010 and Brown et al., 2013].

This review is aimed to guide future research on biomass in context of pyrolysis mechanism and parameters influencing pyrolysis that would leads to optimize desired product yield, improve reaction performance, and energy efficiency, and understand product distribution. These parameters are type of biomass, particle size, temperature, pressure, particle heating rate and residence time.

2. MECHANISM OF BIOMASS PYROLYSIS

The thermal conditions, reactor designs and reaction mechanisms of degradation of the biomass constituents are the complexity of biomass pyrolysis making it a mystery to the researcher. During biomass pyrolysis, following reactions occur in series and parallel, including dehydration, depolymerization, decarboxylation, charring, isomerization and aromatization. It consists of three main stages: (i) evaporation of free moisture, (ii) primary mechanism (char formation, depolymerization and fragmentation) followed by (iii) secondary mechanism (oil cracking and condensation). Biomass decomposition occurs to form solid char at 400-500 °C, which is responsible for chemical bonds to be broken. The secondary reactions proceed with further rising of the temperature of volatile compounds that remain in primary reaction matrix [Kan et al., 2016; Collard & Blin, 2014 and Ferdous et al., 2002].

2.1 Evaporation of free moisture

Dehydration process starts at 100 °C of biomass, due to release of free moisture (water vapour) from biomass and formation amorphous carbon for char [White et al., 2011].

2.2 Primary decomposition

The primary decomposition depends on the geometry of bonds that are to be broken and can be explain by char formation, depolymerization and fragmentation **[Collard & Blin 2014].**

2.2.1 Char formation

Solid residue named char, formed during the biomass conversion in pyrolysis process, presents an aromatic polycyclic structure [McGrath et al., 2003 and Pastorova et al., 1994]. Fast removal of primary char is necessary because it readily decomposed into secondary char, gas and water and also work as a catalyst for support secondary reaction. Consequently, bio oil yield decreases. The main pathway of this reaction is the benzene rings formation and combination of these rings with polycyclic structure [Kan et al., 2016 and Collard & Blin, 2012]. Figure 1 represents char formation from biomass.

2.2.2 Depolymerization

Depolymerization process consists in the breakdown of large lignocellulosic polymer bond into small aromatic monomers and low molecular weight saturated compounds in temperature range between 300 to 450 °C, which results the chains formation in short range and produced volatiles that are condensable to liquid at atmospheric temperature [Collard & Blin, 2014].

2.2.3 Fragmentation

It consists of the linkage of covalent bonds within the monomer units that results noncondensable gases and formation of linear small chain compounds. At optimum temperatures of around 600 °C active cellulose is breakdown into carbonyls acid, alcohols etc. **[Kan et al., 2016 and Collard & Blin, 2014].** Figure 2 represents depolymerization and fragmentation in pyrolysis of biomass.

Figure 1 Char formation from biomass [Kuthi et al., 2016; Collard & Blin, 2014 and Jahirul et al., 2012]

Figure 2 Depolymerization and fragmentation in pyrolysis of biomass [Zhou et al., 2016; Kan et al., 2016 and Collard & Blin, 2014]

2.3 Secondary reactions

Volatile compounds are not stable released during depolymerization and fragmentation process under reactor temperature condition, they can proceeds further cracking and repolymerization named secondary reactions. This cracking relates to the destruction of chemical bonds of volatile constituents and formation of new higher molecular weight components and these components can either retain within the polymer or within the volatile compounds. In repolymerization reactions, volatiles recombine and formed higher molecular weight polycyclic hydrocarbons, which sometimes are non-volatile under the reactor temperature condition. Further, recombination process occurs inside the pores of solid residue, this reaction can promoted char named secondary char [Nanda et al., 2014; Collard & Blin,

2014 and Jahirul et al., 2012]. Figure 3 reaction mechanisms for pyrolysis of biomass.

3. FACTORS AFFECTING PYROLYSIS

This section mainly deals with the factors such as biomass composition, particle size, temperature, heating rate, vapour residence time and reaction atmosphere that affect performance of pyrolysis reactions.

3.1 Biomass composition

The composition of biomass feedstock should be taken in to consideration when it aimed to produce higher yield of specific product as the physico-chemical characteristics of each component is different in various biomasses. It is preferable to use cellulose and

Figure 3 Reaction mechanism for pyrolysis of biomass [Wang et al., 2016; Jahirul et al., 2012 and Venderbosch & Prins, 2010]

hemicellulose containing biomass for high bio-oil yield and lignin for the bio-char [Feng & Lin, 2017; Akhtar & Amin, 2012 and Yang et al., 2006a]. It is also evident that pyrolysis of lignin is difficult as compared to cellulose component and it would also contribute in producing dense and viscous bio-oil [Fehmi et al., 2008 and Wang et al., 2008]. High volatile matter favour high production of bio-oil and syn gas, while, fixed carbon favour bio-char. In addition moisture content affects stability, viscosity, corrosiveness and pH of liquid product [Jahirul et al., 2012 and Bridgwater et al., 1999].

3.2 Particle size

Particle size of biomass also plays a vital role in pyrolysis. It is reported that change in particle size of babool seed feedstock from 0 to 1 mm influence the products yield. The char yield increases from 18 % to 25.8 % whereas, gas and liquid product yield decreases from 37 % to 29 % and 42.7 % to 41.8 %, respectively. It is also reported that maximum bio-oil yield (~ 32 %) is found at particle diameter 0.4 mm. Their findings suggest that small particles (below 0.4 mm) are suitable for obtaining a high bio-oil yield [Garg et al., 2016]. In case of palm kernel and cassava pulp residue, the maximum liquid yield of 53.5 % and 42.4 %, respectively observed at 2.03 mm particle size. Using of particle size < 2.03 mm increases volatile yield but lowers liquid yield, while

particle size > 2.03 mm increases solid char yield. This is due to the fact that in smaller particle range temperature inside particle is less this gives higher yield of gas and higher weight volatiles further decomposed to gas products that significantly decreases liquid yield [Oladeji et al., 2015]. For larger size particle char formation is favoured due to large temperature gradient inside particle imparting poor heat transfer [Sensöz et al., 2006 and Sinha et al., 2000]. These observations are generally concluded that uniform heating rate in small size particle yield of bio-oil and volatile gases is more while large size impedes the heat transfer resulting high char formation [Varma & Mondal, 2017 and Encinar et al., 2000].

3.3 Temperature

Bio oil yield is also varies significantly with the pyrolysis temperature. To enhance the quality of biooil it is important to consider the optimum temperature for pyrolysis as it can be seen from Table 1 that reaction temperature influences the product distribution. For example maximum oil yields of 44 % and 45 % for the pyrolysis of tamarind seed occur at $400 \ ^{\circ}$ C [Kader et al., 2013] and safflower seed at 500 $^{\circ}$ C [Beis et al., 2002], respectively. Thereafter, if temperature is further increased, this results in decomposition of oil into gases due to secondary reactions.

Table 1 Product distribution of biomass at various temperature ranges

Biomass	Temperature (⁰ C)	Variation in product distribution
Palm oil waste	400-550	Bio oil yield reaches at its peak value
[Kan et al.,	550- 600	Oil yield decline
2016]	600-700	The char and bio-oils are transformed in to gas due to the dominant secondary reactions. The aliphatic, aromatic and polar fractions in the bio- oils improve.
	> 700	Increase the carbon content due to decarboxylation and dehydration reactions
Kernel cake and	< 150	Char formation does not start
cassava pulp	150-300	Char formation takes place
[Weerachanchai	300-500	Char yield decreases sharply with increase in gaseous product
et al., 2011]	500-800	Slow decrease in char formation as well decrease in liquid product due to devolatization of cellulosic and hemi cellulosic material
	> 800	Char formation approaches a constant value
Hazelnut husk	< 122	Dehydration process
[Ceylan &	122-550	Pyrolytic cracking, hemicelluloses, cellulose and lignin are
Topçu, 2014]		decompose and a high amount of volatile matter formation occurs
	> 550	Endothermic decomposition of the lignin.
Wood	450-500	Gas yield increases from 8 % - 10 %
[Bridgwater et		Organic yield reaches at peak value of 64 %
al., 1999]	500-600	Gas yield increases from 10 % - 30 %
		Organic yield decreases to 47 %
		Char yield continuously decreases from 24 % to 10 % throughout temperature range 450-600 $^{\circ}$ C and constant afterward.
Babool seed	400-700	Char yield decreases from 21 $\%$ to 12 $\%$ due to the decompose of

Available	online	at	www.i	<i>irat.org</i>

[Garg et al., 2016]		char materials at higher temperature Gas yield increases from 32 % to 48 % Liquid yield increases initially from 47 % to 49 % (500 ^o C) and thereafter decreases
Sugarcane bagasse [Varma & Mondal, 2017]	350-500	At heating rate = 10 ^o C/min, bio-oil yield increases to 42.29 % from 29.41 % At heating rate = 50 ^o C/min, bio-oil yield increases to 45.23 % from 31.25 %
, <u>-</u>	500-650	At heating rate = 10° C/min, bio-oil yield decreases to 38.82 % At heating rate = 50° C/min, bio-oil yield decreases to 40.39 %

3.4 Heating rate

Heating rate of pyrolysis process is also an important parameter which affects the pyrolysis performance. Pyrolysis of biomass can be categorized based on heating rate along with reaction temperature as slow, fast and flash. (i) charcoal- low heating rate, low temperature; (ii) liquid- high heating rate, short retention time; (iii) fuel gas- high heating rate, large retention time required for maximization of desired product yield [Feng & Lin, 2017 and Balat et al., 2009]. Varma & Modal, 2017 reported that bio oil yield of sugarcane bagasse increases with the increase in heating rate. At pyrolysis temperature of 500 °C for different heating rate of 10 °C/min and 50 °C/min, the bio oil yield increases from 42.34 to 45.53 % and char yield decreases from 31.8 to 29.8%, respectively. Similarly, Demiral et al., 2012 also observed the increase in bio oil yield of corncob with heating rate. For different heating rate of 7 ^oC/min and 50 ^oC/min, the bio oil yield increases from 21.05 to 25.12 %, respectively at 500 °C of pyrolysis temperature. Sensoz et al., 2006 observed that at 50 °C/min, the yield of bio-oil was about 3.4-8.4 % higher than the lower heating rate of 10 °C/min. It is reported that faster heating rate maximize the bio-oil yield [Chiaramonti et al., 2007] and char formation favoured by lower heating rate [Uzun et al., 2009].

3.5 Vapour residence time

The yield of bio oil also differs with the vapour residence time. The low residence time favours the high yield of bio oil and high residence time produces high gas during the pyrolysis thus the oil yield reduces. Shorter residence time minimizes the secondary reaction which results high bio-oil formation [Dhyani & Bhaskar, 2017]. Reduction in bio oil yield at high residence time is obtained due to secondary cracking (>500 $^{\circ}$ C) and condensation reaction (> 400 $^{\circ}$ C) [Bridgwater et al., 1999]. [Scott et al., 1999] performed pyrolysis of raw sorghum at 525 $^{\circ}$ C and found that when vapour residence time change from 0.2 to 0.9 s, the reduction in yield of biooil is observed from 75 % to 57 %, respectively. Similar decrease in yield of bio oil is reported with the increase in residence time in case of sweet gum wood [Boroson et al., 1989].

3.6 Reaction atmosphere

Pyrolysis of biomass is generally performed under inert atmosphere because devolatization rate in deoxidizing atmosphere found more to that of oxidative degradation [Oladeji et al., 2015]. According to study on corncob [Zhang et al., 2011] obtained total liquid yield under CO, N2, CO2, CH4 and H₂ atmospheres are found 49.6 %, 57.1 %, 55.3 %, 58.7 % and 56.4 % respectively. This can be arranged in descending order of liquid yield $CH_4 > N_2$ >H₂>CO₂>CO. CH₄ has highest yield among all this gases but the gases containing carbon (i.e. CH_4 , CO_2) and CO) provides favorable condition for deposition of polymerizing compound on reactor bed which is undesirable. Thus, second option of N2 is found best suitable. Several other authors also conducted the pyrolysis process under nitrogen environment [Varma & Modal, 2017, Nanda et al., 2014]. Table 2 shows the influence of reaction atmosphere on pyrolysis product. Table 3 presents the optimum parameters such as heating rate, reaction temperature, particle size and sweeping gas flow rate as well as the yield of pyrolysis process of different biomass.

Table 2 Influence of reaction atmosphere on pyrolysis product

Atmosphere	Influence		
Steam Pyrolysis	Steam can weakly oxidise the biomass		
[Putun et al., 2008]	Increases yield of organic oxygenated product		
	Prevent secondary cracking reaction		
N_2 , CO_2 , CO , CH_4 and	CH_4 gives highest yield of bio-oil = 58.7 %		
H ₂ atmospheres	CO gives lowest yield of bio-oil = 49.6 %		
[Zhang et al., 2011]	CO and CO ₂ gives lower methoxy and larger monofunctional phenols containing		

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

	compound			
CO ₂ and H ₂ atmosphere	Bio-oils reach the highest value (HHV) of 24.4 MJ/kg			
[Guizani et al., 2014]	O_2 to H_2O conversion are more			
	Char produce has high surface area			
N_2	Volatile vapors are removed quickly at high flow rate of N_2			
[Saikia et al., 2015]	Minimizes thermal cracking and formation of light gases to maximize bio-oil yield.			
	Hot pyrolysis vapors quenched rapidly			
N_2	N ₂ flow rate.	hio_oil vield	Char viold	• 11
- <u>L</u>	,	bio-on yielu	Char yielu	gas yield
[Varma & Mondal,	cm ³ /min	bio-on yield	Chai yielu	gas yield
[Varma & Mondal, 2017]	<u>cm³/min</u> 50-100	39.53-44.95 %		gas yield
[Varma & Mondal, 2017]	<u>cm³/min</u> 50-100 200	39.53-44.95 % 41.89 %.	- -	gas yield - -

Table 3 Optimum parameters for pyrolysis of different biomass

Biomass	Optimum Parameters	Yield in wt%
Live and Dead fuels [Amini et al., 2019]	HR= 30 $^{\circ}$ C/min N ₂ flow rate=100 ml/min	Oil =51.5 % at 500 $^{\circ}$ C Char =35.5 % at 400 $^{\circ}$ C Gas =40.0 % at 800 $^{\circ}$ C
Corn cob [Khuenkaeo & Tippayawong, 2019]	T=500 $^{\circ}$ C N ₂ flow rate=5 L/min particle size= 8-10 mm	Oil =72 %
Coconut shells [Khuenkaeo & Tippayawong, 2019]	T=500 $^{\rm O}$ C N ₂ flow rate=5 L/min particle size= 8-10 mm	Oil =50 %
Bamboo residue [Khuenkaeo & Tippayawong, 2019]	T=500 $^{\circ}$ C N ₂ flow rate=5 L/min particle size= 8-10 mm	Oil =45 %
Pine needle [Varma & Mondal, 2018]	$T = 550 ^{\text{O}}\text{C}$ HR = 50 \end{v}C/min N ₂ flow rate = 100 ml/min	Oil =43.8 %
Sugarcane [Varma & Mondal, 2017]	$T = 500 ^{\text{O}}\text{C}$ HR = 50 \end{v}\text{C/min} N ₂ flow rate = 100 ml/min Particle size =0.5-0.6 mm	Oil =45.23 %
Babool seed [Garg et al., 2016]	$T = 500 {}^{O}C$ N ₂ flow rate = 100 ml/min Particle size =upto 0.4 mm	Liquid =49 % Oil =38.3 %
Microalgae (Scnedesmus Dimorphus) [Bordoloi et al., 2016]	$T = 500 ^{\circ}\text{C}$ HR = 40 $^{\circ}\text{C/min}$ N ₂ flow rate = 100 ml/min	Oil =36.6 %
Hornbeam (Carpinus Betulus L.) [Morali & Sensoz, 2016]	$T = 550 ^{\text{O}}\text{C}$ HR = 30 \overline{O}C/min N ₂ flow rate = 100 ml/min	Oil =35.2 %
Wood [Mahmood et al., 2016]	$T = 675 {}^{\circ}C$ HR = 10 ${}^{\circ}C/min$	Oil =52 %
Sewage sludge [Mahmood et al., 2016]	$T = 675 {}^{\rm O}C$ HR = 10 ${}^{\rm O}C/min$	Oil =36 %
Newspaper [Mahmood et al., 2016]	$T = 675 {}^{\rm O}C$ HR = 10 ${}^{\rm O}C/min$	Oil =68 %
Bamboo [Chen et al., 2015]	$T = 500 ^{\text{O}}\text{C}$ HR = 10 \end{v}C/min N ₂ flow rate = 70 ml/min	Oil =36.5 %
Jatropha curcas cake [Majhi et al., 2015]	$T = 550 {}^{\text{o}}\text{C}$ HR = 5 ${}^{\text{o}}\text{C/min}$ N ₂ flow rate = 100 ml/min	Oil =45 %

Ferda orientalis L. T = 500 $^{\circ}$ C Liquid = 45.2 %. [Aysu & Kucuk, 2014] HR = 50 $^{\circ}$ C/min N ₂ flow rate = 100 ml/min Karanja seed T = 550 $^{\circ}$ C Oil = 55.1 % [Shadangi & Mohanty, 2014] N ₂ flow rate = 50 ml/min Blue green algae blooms T = 500 $^{\circ}$ C Oil = 54.9 % [Hi et al., 2013] N ₁ flow rate = 100 ml/min Corn cob T = 500 $^{\circ}$ C Oil = 26.4 % [Demiral et al., 2012] HR = 40 $^{\circ}$ C/min N ₁ flow rate = 100 ml/min Wheat straw T = 400 $^{\circ}$ C Liquid = 46 %. [Ding et al., 2012] RT = 1 s Graver 37 % Single pass corn stover T = 500 $^{\circ}$ C Liquid = 55 % (Shah et al., 2012] HR = 6 $^{\circ}$ C/min Char = 25 % Gras = 16.2 % Switchgrass (Panicum Virgantum) T = 600 $^{\circ}$ C Liquid = 57 % (Shah et al., 2012] HR = 6 $^{\circ}$ C/min Char = 25 % Graver 4, 2012] HR = 6 $^{\circ}$ C/min Char = 25 % Graver 4, 2012] HR = 50 $^{\circ}$ C Oil = 50 % [Aprawalla et al., 2011] HR = 20 $^{\circ}$ C/min Char = 25 % Graver 4, 2011] HR = 20 $^{\circ}$ C/min T = 400 $^{\circ}$ C Oil = 50 $^{\circ}$ C [Aprawalla et al., 2011] N ₂ flow rate = 2000 ml/min T = 4 waste T = 500 $^{\circ}$ C Oil = 50 $^{\circ}$ C [Aprawalla et al., 2011] N ₂ flow rate = 2000 ml/min Hardwood shaving T = 500 $^{\circ}$ C Oil = 20.6 % [Aprawalla et al., 2010] HR = 300 $^{\circ}$ C/min Char = 21.7 % Graver 41, 2010] HR = 300 $^{\circ}$ C/min Char = 21.7 % Graver 41, 2010] HR = 50 $^{\circ}$ C Oil = 20.6 % [Aprice pulps [Ozbar et al., 2006] HR = 10 $^{\circ}$ C/min Char = 21.7 % Graver 41, 2006] HR = 10 $^{\circ}$ C/min Char = 23.5 % [Apricot pulps [Ozbar et al., 2006] HR = 10 $^{\circ}$ C/min Char = 23.5 % [Apricot pulps [Ozbar et al., 2006] HR = 50 $^{\circ}$ C/min Char = 23.7 % Particle size < 1 mm Graver 24 % [Origone Stalk, 2006] HR = 100 $^{\circ}$ C Liquid = 53.8 % [Prittin et al., 2006] HR = 50 $^{\circ}$ C Liquid = 23.8 % [Prittin et al., 2006] HR = 750 $^{\circ}$ C Liquid = 23.8 % [Prittin et al., 2006] HR = 30 $^{\circ}$ C/min Char = 27.9 % Particle size < 0.425 $^{\circ}$ C/min Char = 27.9 % Particle size < 0.425 $^{\circ}$ C/min Char = 27.9 % Particle size < 0.45 $^{\circ}$ C/min Char = 27.9 % Particle siz			
$ \begin{bmatrix} Lysu & Kucuk, 2014 \end{bmatrix} & HR = 50^{\circ}Cmin & M_{1}^{\circ}how rate = 100 mJ/min & HR = 50^{\circ}C & Oil = 55.1 \% \\ \hline Mathematical Science (Statistic Science) & Statistic Science (Statistic Science) & Oil = 55.1 \% & M_{1}^{\circ}how rate = 50 mJ/min & Oil = 55.1 \% & M_{1}^{\circ}how rate = 50 mJ/min & Oil = 26.4 \% \\ \hline Hu et al., 2013 & N_{1}^{\circ}flow rate = 100 mJ/min & Oil = 26.4 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 26.4 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 26.4 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 26.5 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 26.4 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 26.4 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 25.5 \% & M_{1}^{\circ}how rate = 100 mJ/min & Oil = 45.6 \% & M_{1}^{\circ}how rate = 100 mJ/min & Gas = 7 \% & Gas = 16.2 \% & M_{1}^{\circ}how rate = 200^{\circ}C & Liquid = 55 \% & M_{1}^{\circ}how rate = 200^{\circ}C & Oil = 25.5 \% & Gas = 16.2 \% & Gas = 26.6 \% & Oil = 50 \% & HR = 6^{\circ}C/min & Gas = 26 \% & Gas = 26.6 \% & Oil = 50 \% & Gas = 26.6 \% & Oil = 50 \% & Gas = 26.6 \% & Oil = 50 \% & Gas = 26.6 \% & Oil = 50 \% & Gas = 26.6 \% & Gas = 26.7 \% & Gas = 26.7 \% & Gas = 24.4 \% & Gas = 24.6 \% & Gas = 23.7 \% & Gas = 24.4 \% & Gas = 24.6 \% & Gas = 23.7 \% & Gas = 23.7 \% & Gas = 24.4 \% & Gas = 24.4 \% & Gas = 24.4 \% & Gas = 24.6 \% & Gas = 23.7 \% & Gas = $	Ferula orientalis L.	$T = 500 ^{\circ}C$	Liquid = 45.2 %
Prove the clock [P1-1] N ₂ flow rate = 100 ml/min Karanja seed T = 550 °C Oil = 55.1 % Shadangi & Mohanty, 2014] N ₃ flow rate = 50 ml/min Oil = 55.1 % Blue green algae blooms T = 500 °C Oil = 54.9 % [Hu et al., 2013] N ₃ flow rate = 100 ml/min Oil = 26.4 % [Demiral et al., 2012] HR = 40 °C/min Oil = 26.4 % [Ding et al., 2012] RT = 1 s Char = 47 % Single pass corn stover T = 500 °C Liquid = 55 % [Shah et al., 2012] RT = 1.5 s Gas = 16.2 % Switchgrass (Panicum Virgantum) T = 600 °C Liquid = 37 % [Imam & Capareda, 2012] HR = 6° °C/min Char = 25.7 % (Gas = 10.2 °C/min Gas = 26 % Groundnut DOC T = 450 °C Oil = 50 % [Agrawalia et al., 2011] N ₂ flow rate = 200 ml/min T = 500 °C Oil = 47.3 % [Abrisa et al., 2010] HR = 50 °C/min Oil = 23.3 % Char = 12.7 % [Agrawalia et al., 2010] HR = 50 °C/min Oil = 23.3 % Char = 12.7 % [Agrawalia et al., 2010] RT < 550 °C Oil = 23.3 % Char = 12.7 % [Agrawalia et al., 20	[Avsu & Kucuk, 2014]	$HR = 50^{\circ}C/min$	1
Karanja seed T = 550 °C Oil = 55.1 % [Shadangi & Mohanty, 2014] N; flow rate = 500 °C Oil = 55.1 % Blue green alge blooms T = 500 °C Oil = 26.4 % [IIu et al., 2013] N; flow rate = 100 ml/min Oil = 26.4 % [Demiral et al., 2012] HR = 40 °C/min Liquid = 46 % (Ding et al., 2012] RT = 1 s Char = 47 % (Gas = 7 %) Gas = 7 % Gas = 16.2 % Single pass corn stover T = 500 °C Liquid = 55 % (Shah et al., 2012] RT = 1.5 s Char = 25 % (Shah et al., 2012] RT = 1.5 s Gas = 16.2 % Switchgrass (Panicum Virgantum) T = 600 °C Liquid = 37 % (Iman & Capareda, 2012] HR = 6 °C/min Char = 25 % (Gas = 26 % Oil = 50 % Gas = 16.2 % (Gas = 201] HR = 6 °C/min Char = 25 % (Japawalla et al., 2011] HR = 0 °C/min Oil = 50 % (Iapawalle et al., 2011] N flow rate = 200 ml/min Oil = 23.6 % (Iapawale et al., 2010] T = 500 °C Oil = 23.6 % (Iapawale et al., 2010] N flow rate = 100 ml/min N flow rate = 200 ml/min <th></th> <th>N flow rate $= 100 \text{ m}/\text{min}$</th> <th></th>		N flow rate $= 100 \text{ m}/\text{min}$	
Karanja seed1 = 50° COII = 55.1 %Shadang & Mohanty, 2014]N; flow rate = 50 ml/minOII = 55.1 %Blue green algae bloomsT = 500° COII = 26.4 %[He et al., 2013]N; flow rate = 100 ml/minOII = 26.4 %Com cobT = 500° CLiquid = 46 %[Demiral et al., 2012]HR = 40° C/minWheat strawT = 400° CLiquid = 46 %[Ding et al., 2012]RT = 1.5Char = 47 %Single pass corn stoverT = 500° CLiquid = 55 %[Shah et al., 2012]RT = 1.5 sGas = 7 %Switchgrass (Panicum Virgantum)T = 600° CLiquid = 37 %[Imam & Capareda, 2012]HR = 6° C/minChar = 25 %Groundnut DOCT = 450° COII = 97.3 %[Agrawalla et al., 2011]N; flow rate = 2000 ml/minPalm ShellT = 500° COII = 97.6 %[IJan et al., 2010]HR = 30° C/minPain ShellT = 500° COII = 27.3 %[Agbev et al., 2010]HR = 50° C/minHardwood shavingT = 550° COII = 23.3 %[Ozbay et al., 2008]HR = 5° C/minApricot palpsT = 550° COII = 23.3 %[Ozbay et al., 2008]HR = 5° C/minGas = 17.7 %Gas = 17.7 %Gas = 17.7 %Gas = 17.7 %[Agbev et al., 2006]HR = 5° C/minChar = 23.7 %[Apricot palpsT = 550° CLiquid = 53.6 %[Yang et al., 2006]HR = 5° C/minChar = 27.9 %[Gas = 100 ml/minT = 550° CLiquid = 27.9 %[Gas = 100 m	17 1	$N_2 \text{ from face } = 100 \text{ fm/ fmm}$	01 55 1 %
	Karanja seed	$T = 550 {}^{\circ}C$	Oil =55.1 %
Blue green algae blooms T = $500^{\circ}C$ Oil = 54.9 % [Hu et al., 2013] N; flow rate = 100 ml/min Oil = 26.4 % [Demiral et al., 2012] HR = $40^{\circ}C$ min Liquid = 46 % [Ding et al., 2012] RT = 100 ml/min Char = 47 % Gas = 7 % Single pass corn stover T = $500^{\circ}C$ Liquid = 55 % [Shah et al., 2012] RT = 1.5 % Char = 47 % (Gas = 76) Char = 25.5 % Gas = 16.2 % Switchgrass (Panicum Virgantum) T = $600^{\circ}C$ Liquid = 37 % [Imam & Capareda, 2012] HR = $6^{\circ}C$ /min Gas = 26 % Groundnut DOC T = $500^{\circ}C$ Oil = 50 % [Agrawalla et al., 2011] HR = $300^{\circ}C$ /min Gas = 26 % Palm Shell T = $500^{\circ}C$ Oil = 73.3 % [Abnisa et al., 2010] HR = $300^{\circ}C$ /min Gas = 24 % Paricot pulps T = $500^{\circ}C$ Oil = 29.6 % [IZam et al., 2010] HR = $50^{\circ}C$ /min Gas = 24 % Paricot pulps T = $500^{\circ}C$ Oil = 23.3 % [IZam et al., 2010] HR = $50^{\circ}C$ /min Char = 23.5 % Char = 200 ml/min Hardwood Shaving	[Shadangi & Mohanty, 2014]	N_2 flow rate = 50 ml/min	
$ \begin{array}{ $	Blue green algae blooms	$T = 500 ^{\circ}\text{C}$	Oil =54.9 %
$ \begin{array}{c} [1] \mbox{Prime} $	[Hu et al. 2013]	No flow rate -100 ml/min	
Controls and the set of the set	Com ash	$T_{2} = 100 \text{ m/mm}$	0:1 2640
	Corn cob	I = 500 C	011 = 20.4 %
Ng-flow rate = 100 ml/minWheat strawT =400 °CLiquid =46 % Char =47 % Gas =7 %[Ding et al., 2012]RT =1 sChar =47 % Gas =7 %Single pass corn stoverT =500 °CLiquid =55 %[Ishah et al., 2012]RT =1.5 sChar =25.5 % Gas =16.2 %Switchgrass (Panicum Virgantum)T = 600 °CLiquid =57 %[Imam & Capareda, 2012]HR = 6 °C/minChar =25.8 % Gas =26.5 %Groundnut DOCT = 450 °COil =50 %[Agrawalla et al., 2011]HR = 20 °C/minOil = 50 %Palm ShellT = 500 °COil =47.3 %[Ivan et al., 2010]HR = 300 °C/minOil =29.6 %Hardwood shavingT = 500 °COil =29.6 %[Ivan et al., 2010]RT <5 sChar =12.7 % Gas =24 %Apricot pulpsT = 550 °COil =23.3 %[Ivan et al., 2008]HR = 5 °C/min N ₂ flow rate = 100 ml/minPath ShellT = 500 °COil =23.3 %[Ivan et al., 2006]HR = 10 °C/min N ₂ flow rate = 100 ml/minPath ShellT = 500 °CLiquid =57.66 %[Ivan et al., 2006]HR =10 °C/min N ₂ flow rate = 200 ml/minPath ShellT = 500 °CLiquid =23.3 %[Ozbay et al., 2006]HR =10 °C/min Patrice size < 1 mm Gas =13.77 %Soybean (Glycine Max L.)T =400 °CLiquid =23.8 %[Patrice size < 1 mmGas =23.6 %[Sensoz & Kaynar, 2006]HR =10 °C/min Patrice size < 0.45:1.8 mm Gas =23.8 %[Patrice size < 0.45:1.8 mmGas =29 %Cotton stalk <th>[Demiral et al., 2012]</th> <th>HR = 40 °C/min</th> <th></th>	[Demiral et al., 2012]	HR = 40 °C/min	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		N_2 flow rate = 100 ml/min	
	Wheat straw	$T = 400 {}^{\circ}C$	Liquid =46 %
	[Ding et al. 2012]	PT = 1 s	Char = 47.%
Single pass corn stoverT =500 °CLiquid =55 %[Shah et al., 2012]RT =1.5 sChar =25.5 %Switchgrass (Panicum Virgantum)T = 600° CLiquid =37 %[Imam & Capareda, 2012]HR = 6° C/minChar =25 %Gas =16.2 %Gas =16.2 %Groundnut DOCT = 450° COli = 50 %[Apravalla et al., 2011]HR = 20° C/minGil = 90 %Palm ShellT = 500° COli = 47.3 %[Abinsa et al., 2010]N2 flow rate = 2000 ml/minLiquid =63.3 %Te awasteT = 500° COil = 29.6 %[Uzun et al., 2010]RT < $5 s$ Char = 12.7 %Gas =24 %Char =12.7 %Gas =24 %Apricot pulpsT = 550° COil = 23.3 %[Oxbay et al., 2006]HR = 30° C/minChar =12.7 %Gas =13.77 %T = 600° CLiquid = 57.66 %[Yang et al., 2006]HR = 10° C/minChar =28.57 %Particle size <1 mm	[Ding et al., 2012]	$\mathbf{K}\mathbf{I} = \mathbf{I}\mathbf{S}$	$C_{na} = 7 \frac{7}{10}$
Single pass corn stover $T = 500 ^{\circ}C$ Liquid $= 55 ^{\circ}\%$ [Shah et al., 2012]RT = 1.5 sChar $= 25.5 ^{\circ}\%$ Switchgrass (Panicum Virgantum)T = $600 ^{\circ}C$ Liquid $= 37 ^{\circ}\%$ [Imam & Capareda, 2012]HR $= 6 ^{\circ}C$ /minChar $= 25 ^{\circ}\%$ [Groundut DOCT = $450 ^{\circ}C$ Oil = $50 ^{\circ}\%$ [Aprawalla et al., 2011]HR $= 300 ^{\circ}C$ Oil = $73.3 ^{\circ}\%$ Pain ShellT = $500 ^{\circ}C$ Oil = $47.3 ^{\circ}\%$ [Uzun et al., 2010]HR $= 300 ^{\circ}C$ /minOil = $29.6 ^{\circ}\%$ Wy flow rate = 2000 ml/minT = $500 ^{\circ}C$ Oil = $29.6 ^{\circ}\%$ Hardwood shavingT = $500 ^{\circ}C$ Oil = $29.4 ^{\circ}\%$ [Applevor et al., 2010]RT < $5 ^{\circ}$ Char = 12.7 $^{\circ}\%$ Gras = 24 $^{\circ}\%$ T = $500 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $550 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $500 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $500 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $500 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $500 ^{\circ}C$ Oil = $23.3 ^{\circ}\%$ (Drize) toulpsT = $500 ^{\circ}C$ Char = $12.7 ^{\circ}\%$ (Sare ad ad staving 2006)HR = $10 ^{\circ}C$ /minChar = $23.5 ^{\circ}\%$ (Pare ad ad color)HR = $50 ^{\circ}C$ /minChar = $23.5 ^{\circ}\%$ (Sare ad ad staving 2006)HR = $10 ^{\circ}C$ /minChar = $23.5 ^{\circ}\%$ (Pare ad ad color)HR = $10 ^{\circ}C$ /minChar = $23.5 ^{\circ}\%$ (Pare ad ad color)HR		m f 00 0 d	Gas = 7%
	Single pass corn stover	$T = 500 ^{\circ}C$	$L_{1}qu_{1}d = 55\%$
	[Shah et al., 2012]	RT =1.5 s	Char = 25.5 %
Switchgrass (Panicum Virgantum) [Imam & Capareda, 2012]T = $600^{\circ}C$ Liquid =37 % Char =25 % Gas =26 %Groundnut DOC [Agrawalla et al., 2011]T = $450^{\circ}C$ Oil= 50% Palm ShellT = $500^{\circ}C$ Oil =47.3 %Palm ShellT = $500^{\circ}C$ Oil =47.3 %[Ivan et al., 2010]N2 flow rate = 2000 ml/minOil =29.6 %Tea wasteT = $500^{\circ}C$ Oil =29.6 %[Ivan et al., 2010]RT <5 sChar =12.7 %Gas =24 %Gas =24 %Gas =24 %Apricot pulpsT = $550^{\circ}C$ Oil =23.3 %[Iobay et al., 2008]T = $550^{\circ}C$ Oil =23.3 %Palm ShellT = $600^{\circ}C$ Liquid =57.66 %[Yang et al., 2008]T = $600^{\circ}C$ Liquid =57.66 %[Yang et al., 2006]HR = $10^{\circ}C/min$ Char =28.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.)T = $400^{\circ}C$ Liquid =33.2 %[Jemiral & Şensöz, 2006]HR = $10^{\circ}C/min$ Char =27.9 %Particle size < 0.425 0.6 mmGas =29 %Cotton stalkT = $550^{\circ}C$ Liquid =23.8 %[Pititin et al., 2005]HR = $7^{\circ}C/min$ Char =27.1 %Particle size = 0.85 1.8 mmGas =28.6 %RapeseedT = $550^{\circ}C$ Liquid =23.8 %[Pititin et al., 2005]HR = $30^{\circ}C/min$ Char =27.1 %Particle size = 0.85 1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T = $550^{\circ}C$ Liquid =23.2 %[Pittin et al., 2002]HR = $50^{\circ}C/min$ Char =16 %No sw			Gas =16.2 %
	Switchgrass (Panicum Virgantum)	$T = 600^{\circ}C$	Liquid -37 %
Image Capareon, 2012] $RR = 6$ C/min $Gas = 26$ % Groundnut DOC T = 450 °C Oil = 50 % [Agrawalla et al., 2011] HR = 20 °C/min Oil = 47.3 % [Abnisa et al., 2011] N ₂ flow rate = 2000 ml/min Oil = 29.6 % [Uzun et al., 2010] HR = 300 °C/min Oil = 29.6 % [Izun et al., 2010] HR = 300 °C/min Oil = 29.6 % [Agblevor et al., 2010] RT < 5 s Char = 12.7 % Gas = 24 % Gas = 24 % Gas = 24 % Apricot pulps T = 500 °C Oil = 23.3 % [Ozbay et al., 2008] HR = 5 °C/min N ₂ flow rate = 100 ml/min N ₂ flow rate = 100 ml/min N ₂ flow rate = 100 ml/min Char = 28.57 % Particle size < 1 mm Gas = 13.77 % Soybean (Glycine Max L.) T = 400 °C Liquid = 57.66 % [Yang et al., 2006] HR = 10 °C/min Char = 23.56 % Hazalnut bagasse T = 500 °C Liquid = 53.8 % [Sensoz & Kaynar, 2006] HR = 10 °C/min Char = 27.9 % Cotton stalk T = 500 °C Liquid = 32.8 % [Patricle size = 0.425.0.6 mm Gas = 29 % Cotton stalk T = 500 °C Liquid = 43.8 %	Imam & Canavada 2012]	I = 000 C	$\frac{1}{2} \frac{1}{2} \frac{1}$
Gas = 26 % Groundnut DOC T = 450 °C Oil = 50 % [Agrawalla et al., 2011] HR = 20 °C/min Oil = 47.3 % [Abnisa et al., 2011] N ₂ flow rate = 200 ml/min Oil = 29.6 % [Izun et al., 2010] HR = 300 °C/min Oil = 29.6 % [Izun et al., 2010] HR = 300 °C/min Liquid = 63.3 % [Agblevor et al., 2010] RT < 5 s Char = 12.7 % Apricot pulps T = 550 °C Oil = 23.3 % [Ozbay et al., 2008] HR = 5 °C/min Oil = 23.3 % Path Shell T = 600 °C Liquid = 57.66 % [Yang et al., 2006] HR = 10 °C/min Char = 28.57 % Particle size < 1 mm Gas = 13.77 % Soybean (Glycine Max L.) T = 400 °C [Sensoz & Kaynar, 2006] HR = 50 °C/min Char = 23.56 % Hazelnut bagasse [Demiral & Şensöz, 2006] HR = 10 °C/min Char = 23.79 % Particle size < 0.425-0.6 mm Gas = 29 % Cotton stalk T = 550 °C Liquid = 43.2 % M Particle size = 0.425-0.6 mm Gas = 29 % Silvergrass (Miscanthus X Gigantens) T = 550 °C	[Imam & Capareda, 2012]	HR = 0 C/min	Char = 25%
			Gas =26 %
	Groundnut DOC	$T = 450 {}^{\circ}C$	Oil= 50 %
Paim Shell T = 500 °C Oil =47.3 % [Abnisa et al., 2011] N; flow rate = 2000 ml/min Oil =29.6 % [Uzun et al., 2010] HR = 300 °C/min Oil =63.3 % [Agblevor et al., 2010] HR = 300 °C/min Oil =63.3 % [Agblevor et al., 2010] RT < 5 s Char =12.7 % Gas =24 % Gas =24 % Gas =24 % Apricot pulps T = 550 °C Oil =23.3 % [Ozbay et al., 2008] HR = 5 °C/min Char =12.7 % Paim Shell T = 560 °C Oil =23.3 % [Ozbay et al., 2008] HR = 5 °C/min Char =12.7 % Paim Shell T = 600 °C Liquid =57.66 % [Yang et al., 2006b] HR =10 °C/min Char =28.57 % Particle size < 1 mm Gas =13.77 % Soybean (Glycine Max L.) T =400 °C [Sensoz & Kaynar, 2006] HR =50 °C/min Char =27.7 % [Particle size = 0.425=0.6 mm Gas =29 % Cotton stalk T =550 °C Liquid =23.8 % [Pütün et al., 2005] HR = 10 °C/min Char =27.1 % Particle size =0.45=0.6 mm Gas =29 % Cotton stalk T =550 °C Liquid =23.8 % Furicle size =0.85=1.25	[Agrawalla et al., 2011]	HR= 20 ^o C/min	
I amount1 = 500 °COI = 29.6 %[Joins at al., 2011]N; flow rate = 2000 ml/minTea wasteT = 500 °COil = 29.6 %[Uzun et al., 2010]HR = 300 °C/minN ₂ flow rate = 200 ml/minHardwood shavingT = 500 °C, fast HRLiquid = 63.3 %[Agblevor et al., 2010]RT < 5 sChar = 12.7 %Gas = 24 %Apricot pulpsT = 550 °COil = 23.3 %[Ozbay et al., 2008]HR = 5 °C/minN; flow rate = 100 ml/minPatricle size < 1 mmPalm ShellT = 600 °CLiquid = 57.66 %[Yang et al., 2006b]HR = 10 °C/minChar = 28.57 %Particle size < 1 mmGas = 13.77 %Soybean (Glycine Max L.)T = 400 °CLiquid = 23.8 %[Sensoz & Kaynar, 2006]HR = 50 °C/minChar = 23.56 %Hazelnut bagaseT = 500 °CLiquid = 33.2 %[Demiral & Şensöz, 2006]HR = 10 °C/minChar = 27.9 %Particle size = 0.425-0.6 mmGas = 29 %Cotton stalkT = 550 °CLiquid = 23.8 %[Pittin et al., 2005]HR = 7 °C/minChar = 77.1 %Particle size = 0.85-1.8 mmGas = 28.6 %RapeseedT = 550 °CLiquid = 49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar = 16 %No sweeping gasGas = 29 %Particle size = 0.85-1.25 mmSilvergrass (Miscanthus X Gigantens)T=550 °COil = 23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil = 23.92 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =	Palm Shell	$T = 500^{\circ}C$	Oil -47 3 %
[Abilisate et al., 2011] N2 now rate 200 ml/min Fea waste T = 500 °C Oil =29.6 % [Uzun et al., 2010] HR = 300 °C/min N2 flow rate = 200 ml/min Hardwood shaving T = 500 °C, fast HR Liquid =63.3 % [Agblevor et al., 2010] RT < 5 s Char =12.7 % Gas =24 % Oil =23.3 % Oil =23.3 % [Ozbay et al., 2008] HR = 5 °C/min N2 flow rate = 100 ml/min Patricot pulps T = 550 °C Oil =23.7 % [Ozbay et al., 2006] HR = 5 °C/min N2 flow rate = 100 ml/min Patricle size < 1 mm Gas =13.77 % Soybean (Glycine Max L.) T =400 °C Image: Sensoz & Kaynar, 2006] HR = 50 °C/min Char =23.56 % Hazelnut bagasse T =500 °C Liquid =23.8 % [Demiral & Şensöz, 2006] HR =10 °C/min Char =27.9 % Particle size =0.425-0.6 mm Gas =29 % Cotton stalk T =550 °C [Puttim et al., 2005] HR = 30 °C/min Char =27.1 % Particle size =0.85-1.8 mm Gas =28.6 % Rapesced [Puttim et al., 2005] Fa =50 °C Liquid =49 % [Puttin et al., 2005] HR = 50 °C/mi	$\begin{bmatrix} \mathbf{A} \mathbf{b} \mathbf{n} \mathbf{s} \mathbf{a} \mathbf{a} \mathbf{t} \mathbf{a} \end{bmatrix} 2011$	1 = 500 C	011 - 17.5 70
Tea waste $1 = 300 ^{\circ}C$ $Oll = 29.6 \%$ [Uzun et al., 2010] $HR = 300 ^{\circ}C/min$ $N_2 flow rate = 200 ml/min$ Hardwood shaving $T = 550 ^{\circ}C$, fast HR Liquid =63.3 % [Agblevor et al., 2010] $RT < 5 s$ $Char = 12.7 \%$ Gas =24 % Apricot pulps $T = 550 ^{\circ}C$ $Oil = 23.3 \%$ [Ozbay et al., 2008] $HR = 5 ^{\circ}C/min$ $N_2 flow rate = 100 ml/min$ Palm Shell $T = 600 ^{\circ}C$ Liquid =57.66 % [Yang et al., 2006b] $HR = 10 ^{\circ}C/min$ $Char = 28.57 \%$ Particle size <1 mm Gas =13.77 % Soybean (Glycine Max L.) $T = 400 ^{\circ}C$ Liquid =25.81 % [Sensoz & Kaynar, 2006] $HR = 50 ^{\circ}C/min$ $Char = 23.56 \%$ Hazelnut bagasse $T = 500 ^{\circ}C$ Liquid =33.2 % [Demiral & Şensöz, 2006] $HR = 10 ^{\circ}C/min$ $Char = 27.9 \%$ Particle size =0.425-0.6 mm Gas =29 % Cotton stalk $T = 550 ^{\circ}C$ Liquid =33.8 % [Pittin et al., 2005] $HR = 7 ^{\circ}Cmin$ $Char = 27.1 \%$ Particle size =0.85-1.8 mm Gas =28.6 % Rapeseed $T = 550 ^{\circ}C$ Liquid =49 % [Onay & Koçkar, 2004] $HR = 30 ^{\circ}C/min$ $Char = 27.1 \%$ Particle size =0.85-1.25 mm Silvergrass (Miscanthus X Gigantens) $T = 550 ^{\circ}C$ Oil =23.92 % [Yorgun & Simsek, 2003] $HR = 50 ^{\circ}C/min$ $Char = 20 \%$ Silvergrass (Miscanthus X Gigantens) $T = 550 ^{\circ}C$ Oil =23.92 % [Yorgun & Simsek, 2003] $HR = 50 ^{\circ}C/min$ $Char = 16 \%$ No sweeping gas Gas =29 % Particle size = 0.85-1.25 mm Safflower seed $T = 550 ^{\circ}C$ Oil =23.92 % [Yorgun & Simsek, 2003] $HR = 50 ^{\circ}C/min$ $Char = 100 ml/min$ 0.425 < particle size > 0.6 mm Safflower seed $T = 500 ^{\circ}C$ Oil =44 % [Beis et al., 2002] $HR = 50 ^{\circ}C/min$ $Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm$		$N_2 \text{ flow fate } = 2000 \text{ fm/ fmm}$	
	I ea waste	$I = 500 {}^{\circ}C$	Oil =29.6 %
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	[Uzun et al., 2010]	HR = 300 °C/min	
Hardwood shaving [Agblevor et al., 2010]T = 500 $^{\circ}$ C, fast HR RT < 5 s		N_2 flow rate = 200 ml/min	
[Agblevor et al., 2010]RT < 5 s	Hardwood shaving	T = 500 °C, fast HR	Liquid = 63.3 %
InterpretationInterpretationInterpretationApricot rulpsT = 550 °COil =23.3 %[Ozbay et al., 2008]HR = 5 °C/min N ₂ flow rate = 100 ml/minLiquid =57.66 %[Yang et al., 2006b]HR =10 °C/minChar =28.57 % Particle size < 1 mmSoybean (Glycine Max L.)T =400 °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.1 %Particle size = 0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pittin et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.425-0.6 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR =30 °C/minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T =500 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %[Beis et al., 2002]HR =50 °C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seedT =500 °COil =44 %[Beis et al., 2002]HR =50 °C/min 0.425 < particle size > 1.25 mmOil =44 %	[Aghlevor et al. 2010]	PT < 5 s	$\frac{-127}{127}$
Apricot pulpsT = 550 °COil =23.3 %[Ozbay et al., 2008]HR = 5 °C/min N2 flow rate = 100 ml/minOil =23.3 %Palm ShellT =600 °CLiquid =57.66 %[Yang et al., 2006b]HR =10 °C/minChar =28.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.)T =400 °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size = 0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Püttin et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gasGas =29 %Silvergrass (Miscanthus X Gigantens)T =550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minChar =16 %AgeseedT = 500 °COil =44 %[Beis et al., 2002]HR =5 °C/minOil =44 %Sweeping flow rate =100 ml/min0.425 < particle size > 1.25 mm	[Agolevol et al., 2010]	KI < 5.5	$C_{100} = 12.7 \ 70$
Apricot pulps $T = 550^{\circ}C$ $Oll = 23.3 \%$ [Ozbay et al., 2008]HR = 5 °C/minPalm ShellT = 600 °C[Yang et al., 200b]HR = 10 °C/minChar = 28.57 %Particle size < 1 mmGas = 13.77 %Soybean (Glycine Max L.)T = 400 °CLiquid = 25.81 %[Sensoz & Kaynar, 2006]HR = 50 °C/minHazelnut bagasseT = 500 °CLiquid = 23.26 %[Demiral & Şensöz, 2006]HR = 10 °C/minParticle size = 0.425-0.6 mmGas = 29 %Cotton stalkT = 550 °C[Pütün et al., 2005]HR = 7 °C/minParticle size = 0.85-1.8 mmGas = 28.6 %RapeseedT = 550 °C[Onay & Koçkar, 2004]HR = 30 °C/minNo sweeping gasGas = 29 %Silvergrass (Miscanthus X Gigantens)T = 550 °C[Yorgun & Simsek, 2003]HR = 50 °C/minOdd = 25.25 °MOil = 23.92 %[Yorgun & Simsek, 2003]HR = 50 °C/min0.425 < particle size > 0.6 mmOil = 23.92 %[Beis et al., 2002]HR = 5 °C/min0.425 < particle size > 1.25 mm		T 550 0 C	0as -24%
	Apricot pulps	T = 550 °C	Oil =23.3 %
N2 flow rate = 100 ml/minPalm ShellT =600 °CLiquid =57.66 %[Yang et al., 2006b]HR =10 °C/minChar =28.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.)T =400 °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pittin et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gasGas =29 %Silvergrass (Miscanthus X Gigantens)T =550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %Safflower seedT =500 °COil =23.92 %[Beis et al., 2002]HR =5 °C/minOil =44 %[Beis et al., 2002]HR =5 °C/minSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mmSweeping flow rate =100 ml/minOil =44 %	[Ozbay et al., 2008]	HR = 5 °C/min	
Palm Shell $T=600$ °CLiquid =57.66 %[Yang et al., 2006b]HR =10 °C/minChar =28.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.) $T=400$ °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasse $T=500$ °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Cotton stalk $T=550$ °CLiquid =23.8 %[Püttin et al., 2005]HR =1 °C/minChar =27.1 %Particle size =0.425-0.6 mmGas =28.6 %Rapeseed $T=550$ °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gasGas =29 %Silvergrass (Miscanthus X Gigantens) $T=550$ °COil =23.92 %[Yorgun & Simsek, 2003] $T=550$ °COil =23.92 %[Yorgun & Simsek, 2003] $HR=50$ °C/minOil =23.92 %Safflower seed $T=500$ °COil =44 %[Beis et al., 2002]HR =5 °C/minOil =44 %[Beis et al., 2002]HR =5 °C/minSweeping flow rate =100 ml/min		N_2 flow rate = 100 ml/min	
Image NumberImage NumberImage NumberImage Number[Yang et al., 2006b]HR =10 °C/minChar =28.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.)T =400 °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pitin et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %MR = 50 °CUminOil =44 %[Beis et al., 2002]HR =5 °C/minOil =44 %[Beis et al., 2002]HR =5 °C/minOil =44 %	Palm Shell	$T = 600^{\circ}C$	Liquid =57 66 %
I ang et al., 20000]Ink =10 °C/minChai = 20.57 %Particle size < 1 mmGas =13.77 %Soybean (Glycine Max L.)T =400 °C[Sensoz & Kaynar, 2006]HR =50 °C/minHazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minCotton stalkT =550 °C[Pittin et al., 2005]HR =7 °C/minParticle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pittin et al., 2005]HR =7 °C/minParticle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °C[Onay & Koçkar, 2004]HR = 30 °C/minNo sweeping gasGas =29 %Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T =550 °C[Yorgun & Simsek, 2003]T =550 °CO'C/minOil =23.92 %[Yorgun & Simsek, 2003]HR =50 °C/min0.425 < particle size > 0.6 mmSafflower seedT =500 °C[Beis et al., 2002]HR =5 °C/minSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mm	[Vang at al. 2006b]	$HP = -10^{\circ} C/min$	Char = -28.57.%
Soybean (Glycine Max L.)T =400 °CLiquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pütün et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T =550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %Safflower seedT = 500 °COil =23.92 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mmOil =44 %	[1 ang et al., 20000]	TIK =10 C/IIIII	$C_{11a1} = 28.37 \ 70$
Soybean (Glycine Max L.) $T = 400 ^{\circ}C$ Liquid =25.81 %[Sensoz & Kaynar, 2006]HR =50 $^{\circ}C$ /minChar =23.56 %Hazelnut bagasse $T = 500 ^{\circ}C$ Liquid =33.2 %[Demiral & Şensöz, 2006]HR =10 $^{\circ}C$ /minChar =27.9 %Particle size = 0.425-0.6 mmGas =29 %Cotton stalk $T = 550 ^{\circ}C$ Liquid =23.8 %[Pütün et al., 2005]HR =7 $^{\circ}C$ /minChar =27.1 %Particle size = 0.85-1.8 mmGas =28.6 %Rapeseed $T = 550 ^{\circ}C$ Liquid =49 %[Onay & Koçkar, 2004]HR = 30 $^{\circ}C$ /minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens) $T =550 ^{\circ}C$ Oil =23.92 %[Yorgun & Simsek, 2003]HR =50 $^{\circ}C$ /min 0.425 < particle size > 0.6 mmOil =44 %Safflower seed [Beis et al., 2002]HR =5 $^{\circ}C$ /min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mmOil =44 %		Particle size < 1 mm	Gas = 13.77%
[Sensoz & Kaynar, 2006]HR =50 °C/minChar =23.56 %Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pütün et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gasGas =29 %Particle size =0.85-1.25 mmSilvergrass (Miscanthus X Gigantens)T=550 °C[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %MR =50 °CHR =50 °COil =23.92 %[Harton = 16 %No sweeping flow rate =100 ml/min0.425 < particle size > 0.6 mmSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mmSweeping flow rate =100 ml/min	Soybean (Glycine Max L.)	T = 400 °C	Liquid =25.81 %
Hazelnut bagasseT =500 °CLiquid =33.2 %[Demiral & Şensöz, 2006]HR =10 °C/minChar =27.9 %Particle size =0.425-0.6 mmGas =29 %Cotton stalkT =550 °CLiquid =23.8 %[Pütün et al., 2005]HR =7 °C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT = 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gasGas =29 %Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %Safflower seedT =500 °COil =44 %[Beis et al., 2002]HR =5 °C/minSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mmSweeping flow rate =100 ml/min	[Sensoz & Kaynar, 2006]	$HR = 50^{\circ}C/min$	Char = 23.56 %
$ \begin{bmatrix} \textbf{Demiral \& Sensöz, 2006} \end{bmatrix} & HR = 10 ^{\text{O}}\text{C/min} & Char = 27.9 \% \\ Particle size = 0.425 \cdot 0.6 \text{mm} & Gas = 29 \% \\ \hline \text{Cotton stalk} & T = 550 ^{\text{O}}\text{C} & \text{Liquid} = 23.8 \% \\ \hline \textbf{[Pütün et al., 2005]} & HR = 7 ^{\text{O}}\text{C/min} & Char = 27.1 \% \\ Particle size = 0.85 \cdot 1.8 \text{mm} & Gas = 28.6 \% \\ \hline \textbf{Rapeseed} & T = 550 ^{\text{O}}\text{C} & \text{Liquid} = 49 \% \\ \hline \textbf{[Onay \& Koçkar, 2004]} & HR = 30 ^{\text{O}}\text{C/min} & Char = 16 \% \\ No sweeping gas & Gas = 29 \% \\ Particle size = 0.85 \cdot 1.25 \text{mm} \\ \hline \textbf{Silvergrass (Miscanthus X Gigantens)} & T = 550 ^{\text{O}}\text{C} & \text{Oil} = 23.92 \% \\ \hline \textbf{[Yorgun \& Simsek, 2003]} & HR = 50 ^{\text{O}}\text{C/min} & 0.425 < particle size > 0.6 \text{mm} \\ \hline \textbf{Safflower seed} & T = 500 ^{\text{O}}\text{C} & \text{Oil} = 44 \% \\ \hline \textbf{[Beis et al., 2002]} & HR = 5 ^{\text{O}}\text{C/min} & Sweeping flow rate = 100 \text{ml/min} \\ 0.425 < particle size > 1.25 \text{mm} \\ \hline \textbf{Sweeping flow rate} = 1.25 \text{mm} \\ \hline \textbf{Sweeping flow rate} $	Hazelnut bagasse	$T = 500 {}^{\rm O}C$	Liquid =33.2 %
Init = 10Control = 10Control = 21.9Particle size = 0.425-0.6 mmGas = 29 %Cotton stalkT = 550 °CLiquid = 23.8 %[Pütün et al., 2005]HR = 7°C/minChar = 27.1 %Particle size = 0.85-1.8 mmGas = 28.6 %RapeseedT= 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar = 16 %No sweeping gasGas = 29 %Particle size = 0.85-1.25 mmGas = 29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/minOil =23.92 %Safflower seedT = 500 °COil =44 %[Beis et al., 2002]HR =5 °C/minOil =44 %Sweeping flow rate =100 ml/minSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mmSweeping flow rate =100 ml/min	[Demiral & Sensöz, 2006]	$HR = 10^{\circ}C/min$	Char = 27.9%
Cotton stalkT =550 °CLiquid =23.8 %[Pütün et al., 2005]HR =7 °C/min Particle size =0.85-1.8 mmGas =28.6 %RapeseedT= 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/min No sweeping gas Particle size =0.85-1.25 mmChar =16 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/min 0.425 < particle size > 0.6 mmOil =23.92 %Safflower seedT =500 °COil =44 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm	[Dennirui & Şensoz, 2000]	Portiala siza = 0.425.0.6 mm	$C_{na} = 20.9$
Cotton stark $1 = 550 \ C$ Liquid =23.8 %[Pittiin et al., 2005]HR =7 $^{\circ}$ C/minChar =27.1 %Particle size =0.85-1.8 mmGas =28.6 %RapeseedT= 550 $^{\circ}$ CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 $^{\circ}$ C/minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T=550 $^{\circ}$ COil =23.92 %[Yorgun & Simsek, 2003]HR=50 $^{\circ}$ C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seedT =500 $^{\circ}$ COil =44 %[Beis et al., 2002]HR =5 $^{\circ}$ C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm	Contract 11	$T = 550^{\circ}$	das = 23.70
$ \begin{array}{cccc} [\textbf{Pütün et al., 2005]} & HR = 7 \ ^{\circ} C/min & Char = 27.1 \ \% \\ Particle size = 0.85 - 1.8 \ mm & Gas = 28.6 \ \% \\ Particle size = 0.85 - 1.8 \ mm & Char = 16 \ \% \\ [\textbf{Onay & Koçkar, 2004]} & HR = 30 \ ^{\circ} C/min & Char = 16 \ \% \\ No \ sweeping \ gas & Gas = 29 \ \% \\ Particle size = 0.85 - 1.25 \ mm & \\ \hline \\ \textbf{Silvergrass (Miscanthus X Gigantens)} & T = 550 \ ^{\circ} C & Oil = 23.92 \ \% \\ \textbf{IYorgun & Simsek, 2003]} & HR = 50 \ ^{\circ} C/min & \\ 0.425 < particle size > 0.6 \ mm & \\ \hline \\ \textbf{Safflower seed} & T = 500 \ ^{\circ} C & Oil = 44 \ \% \\ \textbf{[Beis et al., 2002]} & HR = 5 \ ^{\circ} C/min & \\ Sweeping \ flow \ rate = 100 \ ml/min & \\ 0.425 < particle \ size > 1.25 \ mm & \\ \hline \end{array} $	Cotton stalk	$1 = 550^{\circ} C$	Liquid =23.8 %
Particle size =0.85-1.8 mmGas =28.6 %RapeseedT= 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/minChar =16 %No sweeping gas Particle size =0.85-1.25 mmGas =29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seedT =500 °COil =44 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm	[Pütün et al., 2005]	HR = 7 °C/min	Char = 27.1 %
RapeseedT= 550 °CLiquid =49 %[Onay & Koçkar, 2004]HR = 30 °C/min No sweeping gas Particle size =0.85-1.25 mmChar =16 % Gas =29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil =23.92 %[Yorgun & Simsek, 2003]HR=50 °C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seedT =500 °COil =44 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm		Particle size =0.85-1.8 mm	Gas =28.6 %
$ \begin{bmatrix} \textbf{Onay & Koçkar, 2004} \end{bmatrix} & HR = 30 ^{\circ}\text{C/min} & \text{Char} = 16 \% \\ \text{No sweeping gas} & \text{Gas} = 29 \% \\ \text{Particle size} = 0.85 \cdot 1.25 \text{mm} \\ \end{bmatrix} \\ \begin{array}{l} \text{Silvergrass (Miscanthus X Gigantens)} & T = 550 ^{\circ}\text{C} & \text{Oil} = 23.92 \% \\ \text{[Yorgun & Simsek, 2003]} & HR = 50 ^{\circ}\text{C/min} \\ 0.425 < \text{particle size} > 0.6 \text{mm} \\ \end{bmatrix} \\ \begin{array}{l} \text{Safflower seed} & T = 500 ^{\circ}\text{C} & \text{Oil} = 44 \% \\ \text{[Beis et al., 2002]} & HR = 5 ^{\circ}\text{C/min} \\ \text{Sweeping flow rate} = 100 \text{ml/min} \\ 0.425 < \text{particle size} > 1.25 \text{mm} \\ \end{array} $	Rapeseed	$T = 550 ^{\circ}\text{C}$	Liquid =49 %
Inter-sore of himChair = 10 %No sweeping gas Particle size = $0.85 \cdot 1.25 \text{ mm}$ Gas = 29 %Silvergrass (Miscanthus X Gigantens)T=550 °COil = 23.92 %[Yorgun & Simsek, 2003]HR=50 °C/min 0.425 < particle size > 0.6 mmOil = 44 %Safflower seedT = 500 °COil = 44 %[Beis et al., 2002]HR = 5 °C/min Sweeping flow rate = 100 ml/min 0.425 < particle size > 1.25 mm	[Onav & Kockar 2004]	$HR = 30^{\circ}C/min$	Char = 16%
No sweeping gas Particle size =0.85-1.25 mmGas = 29 % Particle size =0.85-1.25 mmSilvergrass (Miscanthus X Gigantens) $T=550 ^{\circ}C$ Oil =23.92 % Oil =23.92 %[Yorgun & Simsek, 2003] $HR=50 ^{\circ}C/min$ $0.425 < particle size > 0.6 mmOil =44 %Safflower seedT=500 ^{\circ}COil =44 %[Beis et al., 2002]HR = 5 ^{\circ}C/minSweeping flow rate =100 ml/min0.425 < particle size > 1.25 mm$	[Onuy & Roçnur, 2004]	No sweeping gas	$C_{\text{neg}} = 20.0\%$
Particle size =0.85-1.25 mmSilvergrass (Miscanthus X Gigantens)T=550 $^{\circ}$ COil =23.92 %[Yorgun & Simsek, 2003]HR=50 $^{\circ}$ C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seedT =500 $^{\circ}$ COil =44 %[Beis et al., 2002]HR =5 $^{\circ}$ C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm		No sweeping gas	Uas -27 %
Silvergrass (Miscanthus X Gigantens) $T=550$ °COil =23.92 %[Yorgun & Simsek, 2003]HR= 50 °C/min 0.425 < particle size > 0.6 mmOil =44 %Safflower seed $T=500$ °COil =44 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm		Particle size $=0.85-1.25 \text{ mm}$	
[Yorgun & Simsek, 2003] $HR=50$ °C/min 0.425 < particle size > 0.6 mmSafflower seedT =500 °C[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm	Silvergrass (Miscanthus X Gigantens)	T=550 °C	Oil =23.92 %
$\begin{array}{c c} 0.425 < \text{particle size} > 0.6 \text{ mm} \\ \hline \text{Safflower seed} & T = 500 ^{\circ}\text{C} & \text{Oil} = 44 \% \\ \hline \text{[Beis et al., 2002]} & \text{HR} = 5 ^{\circ}\text{C/min} \\ & \text{Sweeping flow rate} = 100 \text{ml/min} \\ & 0.425 < \text{particle size} > 1.25 \text{mm} \\ \hline \end{array}$	[Yorgun & Simsek, 2003]	HR=50 ^o C/min	
Safflower seed $T = 500$ °COil =44 %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm		0.425 < particle size > 0.6 mm	
Samower seed $1-500$ C $011-44$ %[Beis et al., 2002]HR =5 °C/min Sweeping flow rate =100 ml/min $0.425 < particle size > 1.25 mm$	Safflower seed	$T = 500^{\circ}C$	Oil - 44.%
$[Beis et al., 2002] HK = 5 \ C/min Sweeping flow rate = 100 ml/min 0.425 < particle size > 1.25 mm$		I = 500 C	OII
Sweeping flow rate =100 ml/min 0.425 < particle size > 1.25 mm	[Beis et al., 2002]	HK = 5 C/min	
0.425 < particle size > 1.25 mm		Sweeping flow rate =100 ml/min	
		0.425 < particle size > 1.25 mm	

Liquid means including water in oil; HR –Heating Rate; T –Temperature; RT –Residence time of vapour

4. CONCLUSION

Pyrolysis is an effective sustainable process due to its clean, abundant and carbon neutral characteristics. It has also a capability to fulfil the world energy requirements. Since, the performance of pyrolysis process depends on several parameters, thus the presents review study provides insight about the mechanisms of biomass pyrolysis as well as the optimum process parameters. Following notes can be useful to promote future researcher for further research on this volatile topic:

- Hemicellulose and cellulose containing biomass is preferred if it is aim to produce bio-oil and lignin for char.
- Particle size should be taken as smaller for higher bio-oil yield and larger for char yield.
- Increasing temperature of the reaction results biooil yield passes through maximum, char yield decreases continuously and gaseous product yield increases gradually. So, an optimum temperature is preferred in order to maximize oil yield.
- Liquid yield can be maximizing by maintaining high heating rate, moderate optimum temperature and short residence time.
- Slow heating rate along with high residence time but low temperature favours bio-char yield.
- Larger residence time at high heating rate and high temperature should be avoided for any gaseous component to be present in product stream.
- An inert atmosphere should be maintained by sweeping gas, in which nitrogen is commonly preferred for pyrolysis. It has similar effect as temperature on product distribution, i.e. an optimal inert gas flow rate for bio-oil yield.

REFERENCES

- [1] Abnisa, F., Daud, W.W., Husin, W.N.W. and Sahu, J.N., 2011. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy, 35(5), pp.1863-1872.
- [2] Agblevor, F.A., Beis, S., Kim, S.S., Tarrant, R. and Mante, N.O., 2010. Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Management, 30(2), pp.298-307.
- [3] Agrawalla, A., Kumar, S. and Singh, R.K., 2011. Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresource technology, 102(22), pp.10711-10716.
- [4] Akhtar, J. and Amin, N.S., 2012. A review on operating parameters for optimum liquid oil yield

in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), pp.5101-5109.

- [5] Alonso, D.M., Bond, J.Q. and Dumesic, J.A., 2010. Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), pp.1493-1513.
- [6] Amini, E., Safdari, M.S., DeYoung, J.T., Weise, D.R. and Fletcher, T.H., 2019. Characterization of pyrolysis products from slow pyrolysis of live and dead vegetation native to the southern United States. Fuel, 235, pp.1475-1491.
- [7] Anex, R.P., Aden, A., Kazi, F.K., Fortman, J., Swanson, R.M., Wright, M.M., Satrio, J.A., Brown, R.C., Daugaard, D.E., Platon, A. and Kothandaraman, G., 2010. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89, pp.S29-S35.
- [8] Balat, M., Balat, M., Kırtay, E. and Balat, H., 2009. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), pp.3147-3157.
- [9] Beis, S.H., Onay, Ö. and Koçkar, Ö.M., 2002. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renewable energy, 26(1), pp.21-32.
- [10] Bordoloi, N., Narzari, R., Sut, D., Saikia, R., Chutia, R.S. and Kataki, R., 2016. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable energy, 98, pp.245-253.
- [11] Boroson, M.L., Howard, J.B., Longwell, J.P. and Peters, W.A., 1989. Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE Journal, 35(1), pp.120-128.
- [12] Bridgwater, A.V., Meier, D. and Radlein, D., 1999. An overview of fast pyrolysis of biomass. Organic geochemistry, 30(12), pp.1479-1493.
- [13] Brown, T.R., Thilakaratne, R., Brown, R.C. and Hu, G., 2013. Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 106, pp.463-469.
- [14] Ceylan, S. and Topçu, Y., 2014. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource technology, 156, pp.182-188.
- [15] Chen, D., Liu, D., Zhang, H., Chen, Y. and Li, Q., 2015. Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel, 148, pp.79-86.
- [16] Chiaramonti, D., Oasmaa, A. and Solantausta, Y., 2007. Power generation using fast pyrolysis liquids from biomass. Renewable and sustainable energy reviews, 11(6), pp.1056-1086.

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

- [17] Collard, F.X. and Blin, J., 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, pp.594-608.
- [18] Demiral, İ. and Şensöz, S., 2006. Fixed-bed pyrolysis of hazelnut (Corylus avellana L.) bagasse: influence of pyrolysis parameters on product yields. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(12), pp.1149-1158.
- [19] Demiral, İ., Eryazıcı, A. and Şensöz, S., 2012. Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass and Bioenergy, 36, pp.43-49.
- [20] Dhyani, V. and Bhaskar, T., 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, pp.695-716.
- [21] Ding, T., Li, S., Xie, J., Song, W., Yao, J. and Lin, W., 2012. Rapid pyrolysis of wheat straw in a bench-scale circulating fluidized-bed downer reactor. Chemical Engineering & Technology, 35(12), pp.2170-2176.
- [22] Encinar, J.M., Gonzalez, J.F. and Gonzalez, J., 2000. Fixed-bed pyrolysis of Cynara cardunculus
 L. Product yields and compositions. Fuel Processing Technology, 68(3), pp.209-222.
- [23] Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N. and Jones, J.M., 2008. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 87(7), pp.1230-1240.
- [24] Feng, Q. and Lin, Y., 2017. Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review. Renewable and Sustainable Energy Reviews, 77, pp.1272-1287.
- [25] Ferdous, D., Dalai, A.K., Bej, S.K. and Thring, R.W., 2002. Pyrolysis of lignins: experimental and kinetics studies. Energy & Fuels, 16(6), pp.1405-1412.
- [26] Garg, R., Anand, N. and Kumar, D., 2016. Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renewable energy, 96, pp.167-171.
- [27] Goyal, H.B., Seal, D. and Saxena, R.C., 2008. Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews, 12(2), pp.504-517.
- [28] Guizani, C., Sanz, F.E. and Salvador, S., 2014. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 116, pp.310-320.
- [29] Hu, Z., Zheng, Y., Yan, F., Xiao, B. and Liu, S., 2013. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product

distribution and bio-oil characterization. Energy, 52, pp.119-125.

- [30] Aysu T, Küçük MM. Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 2014;64:1002–25.
- [31] Imam, T. and Capareda, S., 2012. Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis, 93, pp.170-177.
- [32] Jahirul, M., Rasul, M., Chowdhury, A. and Ashwath, N., 2012. Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), pp.4952-5001.
- [33] Kader, M.A., Islam, M.R., Parveen, M., Haniu, H. and Takai, K., 2013. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresource Technology, 149, pp.1-7.
- [34] Kan, T., Strezov, V. and Evans, T.J., 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, pp.1126-1140.
- [35] Khuenkaeo, N. and Tippayawong, N., 2019. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, pp.1-8.
- [36] Kuthi, F.A.A., Norzali, N.R.A.A. and Badri, 2016. Thermal characteristics K.H., of oil palm microcrystalline cellulose from Journal biomass. Malaysian of Analytical Sciences, 20(5), pp.1112-1122.
- [37] Kwietniewska, E. and Tys, J., 2014. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and sustainable energy reviews, 34, pp.491-500.
- [38] Limayem, A. and Ricke, S.C., 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in energy and combustion science, 38(4), pp.449-467.
- [39] Mahmood, H., Moniruzzaman, M., Yusup, S., Khan, M.I. and Khan, M.J., 2016. Kinetic modeling and optimization of biomass pyrolysis for bio-oil production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(14), pp.2065-2071.
- [40] Majhi, A., Sharma, Y.K., Naik, D.V. and Chauhan, R., 2015. The production and evaluation of bio-oil obtained from the Jatropha curcas cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(16), pp.1782-1789.

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

- [41] McGrath, T.E., Chan, W.G. and Hajaligol, M.R., 2003. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1-2), pp.51-70.
- [42] Moralı, U., Yavuzel, N. and Şensöz, S., 2016. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and biochar. Bioresource technology, 221, pp.682-685.
- [43] Nanda, S., Mohanty, P., Kozinski, J.A. and Dalai, A.K., 2014. Physico-chemical properties of biooils from pyrolysis of lignocellulosic biomass with high and slow heating rate. Energy Environ Res, 4(3), p.21.
- [44] Oladeji, J.T., Itabiyi, E.A. and Okekunle, P.O., 2015. A comprehensive review of biomass pyrolysis as a process of renewable energy generation. Journal of Natural Sciences Research, 5(5), pp.99-105.
- [45] Onay, O. and Koçkar, O.M., 2004. Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Biomass and Bioenergy, 26(3), pp.289-299.
- [46] Özbay, N., Apaydın-Varol, E., Uzun, B.B. and Pütün, A.E., 2008. Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy, 33(8), pp.1233-1240.
- [47] Pastorova, I., Botto, R.E., Arisz, P.W. and Boon, J.J., 1994. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), pp.27-47.
- [48] Pütün, A.E., Özbay, N., Önal, E.P. and Pütün, E., 2005. Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Processing Technology, 86(11), pp.1207-1219.
- [49] Pütün, E., Ateş, F. and Pütün, A.E., 2008. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel, 87(6), pp.815-824.
- [50] Saikia, R., Chutia, R.S., Kataki, R. and Pant, K.K., 2015. Perennial grass (Arundo donax L.) Bioresource technology, 188, pp.265-272.
- [51] Santos, N.A., Magriotis, Z.M., Saczk, A.A., Fássio, G.T. and Vieira, S.S., 2015. Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy & Fuels, 29(4), pp.2351-2357.
- [52] Scott, D.S., Majerski, P., Piskorz, J. and Radlein, D., 1999. A second look at fast pyrolysis of biomass—the RTI process. Journal of Analytical and Applied Pyrolysis, 51(1-2), pp.23-37.
- [53] Şensöz, S. and Kaynar, İ., 2006. Bio-oil production from soybean (Glycine max L.); fuel properties of Bio-oil. Industrial Crops and Products, 23(1), pp.99-105.
- [54] Şensöz, S., Demiral, İ. and Gerçel, H.F., 2006. Olive bagasse (Olea europea L.)

pyrolysis. Bioresource technology, 97(3), pp.429-436.

- [55] Shadangi, K.P. and Mohanty, K., 2014. Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel, 115, pp.434-442.
- [56] Shah, A., Darr, M.J., Dalluge, D., Medic, D., Webster, K. and Brown, R.C., 2012. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs. Bioresource technology, 125, pp.348-352.
- [57] Sinha, S., Jhalani, A., Ravi, M.R. and Ray, A., 2000. Modelling of pyrolysis in wood: a review. SESI Journal, 10(1), pp.41-62.
- [58] Stevens, C., 2011. Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons.
- [59] Thakur, L.S., Varma, A.K. and Mondal, P., 2018. Analysis of thermal behavior and pyrolytic characteristics of vetiver grass after phytoremediation through thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 131(3), pp.3053-3064.
- [60] Torres, W., Pansare, S.S. and Goodwin Jr, J.G., 2007. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catalysis Reviews, 49(4), pp.407-456.
- [61] Uzun, B.B. and Sarioğlu, N., 2009. Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology, 90(5), pp.705-716.
- [62] Uzun, B.B., Apaydin-Varol, E., Ateş, F., Özbay, N. and Pütün, A.E., 2010. Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel, 89(1), pp.176-184.
- [63] Varma, A.K. and Mondal, P., 2016a. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. Journal of Thermal Analysis and Calorimetry, 124(1), pp.487-497.
- [64] Varma, A.K. and Mondal, P., 2016b. Physicochemical characterization and pyrolysis kinetics of wood sawdust. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), pp.2536-2544.
- [65] Varma, A.K. and Mondal, P., 2016c. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. Journal of Energy Resources Technology, 138(5), p.052205.
- [66] Varma, A.K. and Mondal, P., 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Industrial crops and products, 95, pp.704-717.
- [67] Varma, A.K. and Mondal, P., 2018. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. Journal of

5

Thermal Analysis and Calorimetry, 131(3), pp.2057-2072.

- [68] Venderbosch, R.H. and Prins, W., 2010. Fast pyrolysis technology development. Biofuels, bioproducts and biorefining, 4(2), pp.178-208.
- [69] Wang, G., Li, W., Li, B. and Chen, H., 2008. TG study on pyrolysis of biomass and its three components under syngas. Fuel, 87(4-5), pp.552-558.
- [70] Wang, X., Hu, M., Hu, W., Chen, Z., Liu, S., Hu, Z. and Xiao, B., 2016. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresource technology, 219, pp.510-520.
- [71] Weerachachai, P., Tanggsathitkulchai, C., Tanggsathitkulchai, M., 2011. Characterization of products of pyrolysis of palm kernel and cassava pulp residue. korean journal of chemical engineering, 28(2), pp.2262-2272.
- [72] White, J.E., Catallo, W.J. and Legendre, B.L., 2011. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of analytical and applied pyrolysis, 91(1), pp.1-33.
- [73] Wright, M.M., Daugaard, D.E., Satrio, J.A. and Brown, R.C., 2010. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 89, pp.S2-S10.
- [74] Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T. and Zheng, C., 2006b. Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel processing technology, 87(10), pp.935-942.
- [75] Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T. and Zheng, C., 2006a. Mechanism of palm oil waste pyrolysis in a packed bed. Energy & Fuels, 20(3), pp.1321-1328.
- [76] Yorgun, S., 2003. Fixed-bed pyrolysis of Miscanthus x giganteus: product yields and biooil characterization. Energy Sources, 25(8), pp.779-790.
- [77] Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J. and Zhong, Z., 2011. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresource technology, 102(5), 4258-4264.
- [78] Zhou, X., Broadbelt, L.J. and Vinu, R., 2016. Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In Advances in Chemical Engineering (Vol. 49, pp. 95-198).